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Dynamical critical exponent of a nonequilibrium Ising model
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The dynamical critical exponerz of the two-dimensional Ising model with competing Glauber and
Kawasaki processes is evaluated by Monte Carlo simulations. This model exhibits the phenomenon of self-
organization when the Kawasaki dynamics is the dominant one. We have calculated the expaseat
function of the parameter that controls the competition between the two processes. Our calculations are
performed at the phase boundary that separates the nonequilibrium ordered and disordered phases. The values
of z we obtain are aroungd=2 for all values of the competing parameter. When the Glauber dynamics is the
only one present the value afis in agreement with most recent calculatiof81063-651X96)07011-0

PACS numbd(s): 64.60.Ht

The dynamical critical exponentof the two-dimensional eter between the Glauber and Kawasaki dynamics, we calcu-
Ising model has been studied extensively in the past. Maniate the dynamical critical exponentalong the critical line
statistical mechanics techniques have been employed to deeparating the ferromagnetic and paramagnetic stationary
termine this exponent. Among the methods used in th@hases. Our approach to evaluaténvolves the nonlinear
evaluation ofz, we point out the Monte Carlo simulations response of the ferromagnetic order parameter of the system,
[1-4], high-temperature series expansi§f,6], damage prepared at its ground state, when it is left at its nonequilib-
spreading[7,8], renormalization-group calculatior®,10], rium stationary critical temperature. We also take advantage
and e expansior{11]. The value found foe in each of these of the fact that, for large values of linear dimensilomf the
calculations is in the range between 1.80 and 2.70, but modgttice, the relaxation of the ferromagnetic order parameter
of them are around the vale=2.10. does not depend on the sike In fact, this procedure was

In this work we have considered a two-dimensional fer-applied beford17] to find the dynamical tricritical exponent
romagnetic Ising model, in which the system is in contactZ Of the two-dimensional spin-1 Ising model with single-ion
with a heat bath at temperatufeand is subject to an exter- anisotropy.
nal flux of energy. These processes can be simulated by two Here we consider a ferromagnetic Ising model on a square
competing dynamics: the contact with the heat bath is takeffttice with N lattice sites. The state of the system is repre-
into account by the single spin-flip Glauber kinetjé€] and  sented byo=(o1,02, ... ,on), where the spin variable
the flux of energy into the system is simulated by a proces@ssumes the valueg= *1. The energy of the system in the
of the Kawasaki type[13], where we exchange nearest- Stateo is given by
neighbor spins, which preserves the order parameter of the
model. In our case, we consider only the exchange of spins
that favors an increase in the energy of the system. There- E(o)=—J>, ooy, (@)
fore, this kind of Kawasaki process is not the usual relax- L]
ational one.

A very interesting feature about the competition between,pere we consider in the summation only pairs of spins that
the Glauber and Kawasaki processes is the emergence of the, nearest neighbors add-0. Let P(a,t) be the probabil-
phenomenon of self-organizatigh4]. It was shown in Ref. ity of finding the system in the state at timet. The evolu-
[14] that, within the dynamical pair approximation and for aion of P(ot) is given by the master equation
two-dimensional square lattice, the system goes continuously '

from the ferromagnetic to the paramagnetic state as we in-

crease the flux of energy. If we further increase this flux, the dP(o,t) , , ,

system self-organizes into an antiferromagnetic phase. We TIZ [P(e",OW(c",0) = P(o,)W(o,0")],

would like to point out that the pair approximation gives no 7 )

self-organization when the exchange coupling between the

nearest-neighbor spins is of the antiferromagnetic fyljz.

In this case, the two-dimensional calculations show that th&vhereW(o’, o) gives the probability, per unit time, for the

antiferromagnetic order is destroyed by a small input of eniransition from the state”’ to states. The two competing

ergy into the system. processes that define the complete dynamical evolution of
We have recently show[ri6] that Monte Carlo simulation the system can be written as

performed on the two-dimensional version of the ferromag-

netic system maintains the picture of a self-organization phe- N , _ ,

nomenon. Nevertheless, the antiferromagnetic phase appears Wio",0)=pWo(c",0) +(1=p)Wi(0", ). @

only when the Kawasaki process is the dominant one. As we

will show below, for each value of the competition param-In the above equation
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FIG. 1. Phase diagram of the two-dimensional kinetic ferromag-
netic Ising model with competing Glaubgurobability p) and Ka-
wasaki(probability 1-p) dynamics. The parametey is given by
n=exp(—JkgT). The system exhibits the paramagn&f, ferro-
magnetic(F), and antiferromagneti¢AF) phases. The broken lines
serve as a guide to the eyes.

FIG. 2. Stationary values of the rat@v as a function of +p at

the transition point between the ferromagnetic and paramagnetic
phases. The error bars give the accuracy of our Monte Carlo data
points. We see that our estimated values of this ratio oscillate
around the exact equilibrium value 1/8.

ing between neighboring spins, which increases the internal

N
yo energy of the ferromagnetic system.
We(o "’)‘;1 5“1 ’015"&-02’ T ’5‘Til_‘7i' SR In order to obtain the phase diagram of the model we have
performed Monte Carlo simulations on a square lattice with
X 8q1 Wi ) (4  LXL=N sites, with the values df ranging fromL=6 up to

80. In all of our simulations we have used periodic boundary
is the single spin-flip Glauber process, which simulates theonditions. Also, we have started the simulations with differ-
contact of our system with the heat bath at absolute temperant initial states in order to guarantee that the final stationary
ture T and states we use in our calculations are the correct ones. For a

given temperatur@ and a chosen value of the probabiljsy

;N we choose at random a sgirfrom a given initial configura-
Wi(o ’U)_iZj 5"&(’15"5:02' T '50}"’1’ T tion. Then we generate a random numkierbetween zero
and unity. If §,<p we choose to perform the Glauber pro-
X gt gpr -+ 00ty Wi () (5 cess; in this process, we calculate the valuavgfo). We
again generate another random numger if &<wi(o),
is the two-spin exchange Kawasaki process, which simulatese flip spini; otherwise we do not. I1§;>p we go over the

, (6)

w;(o)=min

the flux of energy into the system. In these equationKawasaki process. We generate another random nugper
wi(o)andw;j;(o) are, respectively, the probability, per unit in order to select one of the four nearest neighbors of the spin
exchanging two nearest-neighbor spinand j. The w;(o) selected spins only ifvj;=1. We note that after fxN
andw;;(o) are defined by Monte Carlo steps the stationary regime was established for
spin flips or exchanges of spins trials. In order to estimate the
quantities of interest, we have used 50* Monte Carlo steps
and The critical temperature for each value pfwas deter-
mined by plotting the reduced fourth-order cumulgi] as
Wij(‘f):(l for AE;>0, @) resulting phase diagram[16] in the plane 7
=exp(~J/kgT)versus p is shown in Fig. 1. As we will
AEj; is the change in energy after exchanging the neighborz as a function op depends on the previous determination of
ing spinsi andj. Therefore, Eq(7) shows that the effect of ratio 8/v, which is the scaling exponent for the magnetiza-

time, of flipping spini and the probability, per unit time, of i, sayj. Then we find the value of;; and we exchange the
AE all lattice sizes we consider. One Monte Carlo step eghals
i
1 exp{ KBT)
to calculate the averages for any lattice size.

0 for AE;;=<0 a function of temperaturd, for several values of.. The
whereAE; is the change in energy after flipping spimnd  show below, the estimates of the dynamical critical exponent
the Kawasaki dynamics is to favor antiferromagnetic bond+ion in the neighborhood of the stationary critical pdih8].
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_SIS‘ 3. Decr;y_ o;/lm?gncenzlatl(in acs:s? Lunctlon of t(;me,t f_or FIG. 4. Dynamical critical exponert as a function of +p at
p=0.5, measured in Monte Carlo Stef4CS). Here we used natu the transition point between ferromagnetic and paramagnetic

ral logarithms. Measurements were made every 10 MCS, betwee .
. . ! ases. The estimated valueszdiuctuate around the value 2.0.
10 and 320 MCS. The lattice sizes df60x160) (small circles

X i . . o
and(320x320) (small triangles: Here we are interested in the determinatiorzoff we con-

o ] sider very large lattices, it is expected that the magnetization
The magnetization is defined by does not depend on the lattice size. Then it is easy to see that
M(t,L) can be written as

M =(|m]), 8) M(t,L)=AtA"7, (1D)

wherem=1/N= ,o;, and it satisfies the scaling relation ~WhereA is a constant that does not dependlanEquation
(11) is valid only for large values of.. Then, taking into
account Eq.(11), we can evaluate the exponent after a
ML(T)=L""Mo(L""e), (9 log-log plot of M(t,L) versust, for a fixed lattice size.,
once we know the value of rati8/v, given in Fig. 2.

The Monte Carlo method was used again to follow the
evolution of the magnetization in time for the competing
model we are studying. First of all, we select a given value
of competition parametep. For this value ofp we read in
Fig. 1 its respective stationary critical temperature corre-
sponding to the transition between the ferromagnetic and
aramagnetic phases. After we prepare the system to be in its
round state, it evolves in time, measured in Monte Carlo
steps per spin, and we recorded the magnetization at each of
the ten Monte Carlo steps. The details of Monte Carlo simu-

wheree=(T—T,.)/T., T, being the critical temperature for
each value op.

In Fig. 2 we exhibit the results we have foufit] for
Blv for several values gb. The exact value of this exponent
for the equilibrium Ising model is well known and is given
by B/v=1/8. As we can see, our estimated valuesgor,
depicted in Fig. 2, are in accordance with the corresponding
values at equilibrium. This result gives support to the ide
that the equilibrium and nonequilibrium Ising models, which
exhibit up-down symmetry, belong to the same class of uni;_: -
versality[20]. Recently, Bassler and Schmittmal#i] have lation Were given ak_Jo_ve.
extended these arguments about universality including also In Fig. 3 we exhibit a log-log plot oM(t) versust for

nonequilibrium two-state systems that do not respect the u wo values of the lattice siz, I.e.,L =160 and 320, and for

down symmetry of the equilibrium Ising model. A discussionf[he selected valup=0.5. We can see that the decayM{t)

concerning universality classes on driven diffusive systemsIS almost |ndepgndent &f, which allow us to use qul) to
valuate the critical exponert In these calculations we

which settle into nonequilibrium steady states, is the SUbjeCEave used 100 and 50 samples for the small and large lat-

of a review by Schmittmann and Zj22]. i iivelv. We h lso foll d the d ¢
Following Suzuki[23], the dynamic finite-size scaling Ices, respeclively. YWe have also followed the decay or mag-
theory asserts that the magnetization of a system of line etization up to 320 Monte Carlp steps. If we _d|scard the f_|rst
sizel, at its critical point, evolves in time according to the .0 Monte Carlo steps, we can fit our data points to a straight
scaling relation given by line and we obtain from its slope the valy® vz=0.065
+0.001. We have discarded the initial points of simulation
because we want to put the system in its second regime,
M(t,L)=L"A"f(L"%). (100  where a power-law decay of the magnetization is expected
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[24]. Taking into account the value we have obtained for Although we do not present the detailed calculations con-
Blvz and remembering from Fig. 2 th@ »=0.13+0.01 if  cerning the continuous transition between the paramagnetic
p=0.5, we can estimate the value of the critical exporrent and antiferromagnetic phases, the critical temperature and
as being equal to 2:60.2. the dynamical critical exponent can be obtained in a similar

Finally, in Fig. 4 we exhibit a plot of the exponenias a Manner as we have done for the ferromagnetic to paramag-
function of 1-p. For all these values op we have used Netic transition. For instance, f=0.03, we have found that
lattices of size. =320 and runs up to 320 Monte Carlo steps.Z=2:0£0.2.

As we can see, the values of the dynamical critical exponent !N conclusion, we have calculated the dynamical critical
fluctuate around=2. exponentz for the nonequilibrium two-dimensional Ising

This indicates that the underlying symmetries of thiSmodel. The system is in contact with a heat bath at fixed

model are not affected by the flux of energy. We would like [ETP€rature and subject to a continuous flux of energy. We
. ) . . i have performed Monte Carlo simulations and used finite-size
to point out that, as in our simulations the magnitude of our

timated errors can b lar 0.2 the abov m tscaling relations to obtain the value pfat the stationary
estimated errors can be as large as .z, the above assump se boundary between ordefégtromagnetic or antiferro-
cannot be taken as a rigorous statement. But, we expect th

o= agneti¢ and disordered paramagnetic phases. We have
for whatever value of the rate of energy pumping into théghown that the values found far are independent of the

systgm, the critical exponemtmust remain the same becausemagnitude of the flux of energy into the system. This type of
the intensity of the flux of energy cannot change the class ofiiyersal behavior of for the nonequilibrium Ising model is
universality of this competing model. For the special cas&ypected for this two-state Ising model if the flux of energy

wherep=1, that is, when the system satisfies the detaileqyoes not destroy the underlying symmetries of this system.
balance condition, we have found that2.0+0.1. This

value is in agreement with most calculations employing This work was partially supported by the Brazilian agen-

Monte Carlo method¢see Ref[4] and references thergin

cies CNPg and FINEP.
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