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The dynamical critical exponentz of the two-dimensional Ising model with competing Glauber and
Kawasaki processes is evaluated by Monte Carlo simulations. This model exhibits the phenomenon of self-
organization when the Kawasaki dynamics is the dominant one. We have calculated the exponentz as a
function of the parameter that controls the competition between the two processes. Our calculations are
performed at the phase boundary that separates the nonequilibrium ordered and disordered phases. The values
of z we obtain are aroundz52 for all values of the competing parameter. When the Glauber dynamics is the
only one present the value ofz is in agreement with most recent calculations.@S1063-651X~96!07011-0#

PACS number~s!: 64.60.Ht

The dynamical critical exponentz of the two-dimensional
Ising model has been studied extensively in the past. Many
statistical mechanics techniques have been employed to de-
termine this exponent. Among the methods used in the
evaluation ofz, we point out the Monte Carlo simulations
@1–4#, high-temperature series expansion@5,6#, damage
spreading@7,8#, renormalization-group calculations@9,10#,
ande expansion@11#. The value found forz in each of these
calculations is in the range between 1.80 and 2.70, but most
of them are around the valuez52.10.

In this work we have considered a two-dimensional fer-
romagnetic Ising model, in which the system is in contact
with a heat bath at temperatureT and is subject to an exter-
nal flux of energy. These processes can be simulated by two
competing dynamics: the contact with the heat bath is taken
into account by the single spin-flip Glauber kinetics@12# and
the flux of energy into the system is simulated by a process
of the Kawasaki type@13#, where we exchange nearest-
neighbor spins, which preserves the order parameter of the
model. In our case, we consider only the exchange of spins
that favors an increase in the energy of the system. There-
fore, this kind of Kawasaki process is not the usual relax-
ational one.

A very interesting feature about the competition between
the Glauber and Kawasaki processes is the emergence of the
phenomenon of self-organization@14#. It was shown in Ref.
@14# that, within the dynamical pair approximation and for a
two-dimensional square lattice, the system goes continuously
from the ferromagnetic to the paramagnetic state as we in-
crease the flux of energy. If we further increase this flux, the
system self-organizes into an antiferromagnetic phase. We
would like to point out that the pair approximation gives no
self-organization when the exchange coupling between the
nearest-neighbor spins is of the antiferromagnetic type@15#.
In this case, the two-dimensional calculations show that the
antiferromagnetic order is destroyed by a small input of en-
ergy into the system.

We have recently shown@16# that Monte Carlo simulation
performed on the two-dimensional version of the ferromag-
netic system maintains the picture of a self-organization phe-
nomenon. Nevertheless, the antiferromagnetic phase appears
only when the Kawasaki process is the dominant one. As we
will show below, for each value of the competition param-

eter between the Glauber and Kawasaki dynamics, we calcu-
late the dynamical critical exponentz along the critical line
separating the ferromagnetic and paramagnetic stationary
phases. Our approach to evaluatez involves the nonlinear
response of the ferromagnetic order parameter of the system,
prepared at its ground state, when it is left at its nonequilib-
rium stationary critical temperature. We also take advantage
of the fact that, for large values of linear dimensionL of the
lattice, the relaxation of the ferromagnetic order parameter
does not depend on the sizeL. In fact, this procedure was
applied before@17# to find the dynamical tricritical exponent
zt of the two-dimensional spin-1 Ising model with single-ion
anisotropy.

Here we consider a ferromagnetic Ising model on a square
lattice withN lattice sites. The state of the system is repre-
sented bys5(s1 ,s2 , . . . ,sN), where the spin variable
assumes the valuess i561. The energy of the system in the
states is given by

E~s!52J(
i , j

s is j , ~1!

where we consider in the summation only pairs of spins that
are nearest neighbors andJ.0. Let P(s,t) be the probabil-
ity of finding the system in the states at time t. The evolu-
tion of P(s,t) is given by the master equation

dP~s,t !

dt
5(

s8
@P~s8,t !W~s8,s!2P~s,t !W~s,s8!#,

~2!

whereW(s8,s) gives the probability, per unit time, for the
transition from the states8 to states. The two competing
processes that define the complete dynamical evolution of
the system can be written as

W~s8,s!5pWG~s8,s!1~12p!WK~s8,s!. ~3!

In the above equation
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WG~s8,s!5(
i51

N

ds
18 ,s1

ds
28 ,s2

, . . . ,ds
i82s i

, . . . ,

3ds
N8 ,sN

wi~s! ~4!

is the single spin-flip Glauber process, which simulates the
contact of our system with the heat bath at absolute tempera-
tureT and

WK~s8,s!5(
i , j

ds
18,s1

ds
28,s2

, . . . ,ds
j8,s j

, . . . ,

3ds
j8,s i

, . . . ,ds
N8 ,sN

wi j ~s! ~5!

is the two-spin exchange Kawasaki process, which simulates
the flux of energy into the system. In these equations
wi(s)andwi j (s) are, respectively, the probability, per unit
time, of flipping spini and the probability, per unit time, of
exchanging two nearest-neighbor spinsi and j . Thewi(s)
andwi j (s) are defined by

wi~s!5minF1, expS 2
DEi

kBT
D G , ~6!

and

wi j ~s!5H 0 for DEi j<0

1 for DEi j.0,
~7!

whereDEi is the change in energy after flipping spini and
DEi j is the change in energy after exchanging the neighbor-
ing spinsi and j . Therefore, Eq.~7! shows that the effect of
the Kawasaki dynamics is to favor antiferromagnetic bond-

ing between neighboring spins, which increases the internal
energy of the ferromagnetic system.

In order to obtain the phase diagram of the model we have
performed Monte Carlo simulations on a square lattice with
L3L5N sites, with the values ofL ranging fromL56 up to
80. In all of our simulations we have used periodic boundary
conditions. Also, we have started the simulations with differ-
ent initial states in order to guarantee that the final stationary
states we use in our calculations are the correct ones. For a
given temperatureT and a chosen value of the probabilityp,
we choose at random a spini from a given initial configura-
tion. Then we generate a random numberj1 between zero
and unity. If j1<p we choose to perform the Glauber pro-
cess; in this process, we calculate the value ofwi(s). We
again generate another random numberj2 : if j2<wi(s),
we flip spin i ; otherwise we do not. Ifj1.p we go over the
Kawasaki process. We generate another random numberj3
in order to select one of the four nearest neighbors of the spin
i , say j . Then we find the value ofwi j and we exchange the
selected spins only ifwi j51. We note that after 1043N
Monte Carlo steps the stationary regime was established for
all lattice sizes we consider. One Monte Carlo step equalsN
spin flips or exchanges of spins trials. In order to estimate the
quantities of interest, we have used 53104 Monte Carlo steps
to calculate the averages for any lattice size.

The critical temperature for each value ofp was deter-
mined by plotting the reduced fourth-order cumulant@18# as
a function of temperatureT, for several values ofL. The
resulting phase diagram @16# in the plane h
5exp(2J/kBT)versus 12p is shown in Fig. 1. As we will
show below, the estimates of the dynamical critical exponent
z as a function ofp depends on the previous determination of
ratio b/n, which is the scaling exponent for the magnetiza-
tion in the neighborhood of the stationary critical point@19#.

FIG. 1. Phase diagram of the two-dimensional kinetic ferromag-
netic Ising model with competing Glauber~probability p! and Ka-
wasaki ~probability 12p! dynamics. The parameterh is given by
h5exp(2J/kBT). The system exhibits the paramagnetic~P!, ferro-
magnetic~F!, and antiferromagnetic~AF! phases. The broken lines
serve as a guide to the eyes.

FIG. 2. Stationary values of the ratiob/n as a function of 12p at
the transition point between the ferromagnetic and paramagnetic
phases. The error bars give the accuracy of our Monte Carlo data
points. We see that our estimated values of this ratio oscillate
around the exact equilibrium value 1/8.
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The magnetization is defined by

ML5^umu&, ~8!

wherem51/N( i51
N s i , and it satisfies the scaling relation

ML~T!5L2b/nM0~L
1/ne!, ~9!

wheree5(T2Tc)/Tc , Tc being the critical temperature for
each value ofp.

In Fig. 2 we exhibit the results we have found@16# for
b/n for several values ofp. The exact value of this exponent
for the equilibrium Ising model is well known and is given
by b/n51/8. As we can see, our estimated values forb/n,
depicted in Fig. 2, are in accordance with the corresponding
values at equilibrium. This result gives support to the idea
that the equilibrium and nonequilibrium Ising models, which
exhibit up-down symmetry, belong to the same class of uni-
versality@20#. Recently, Bassler and Schmittmann@21# have
extended these arguments about universality including also
nonequilibrium two-state systems that do not respect the up-
down symmetry of the equilibrium Ising model. A discussion
concerning universality classes on driven diffusive systems,
which settle into nonequilibrium steady states, is the subject
of a review by Schmittmann and Zia@22#.

Following Suzuki @23#, the dynamic finite-size scaling
theory asserts that the magnetization of a system of linear
sizeL, at its critical point, evolves in time according to the
scaling relation given by

M ~ t,L !5L2b/n f ~L2zt !. ~10!

Here we are interested in the determination ofz. If we con-
sider very large lattices, it is expected that the magnetization
does not depend on the lattice size. Then it is easy to see that
M (t,L) can be written as

M ~ t,L !5At2b/nz, ~11!

whereA is a constant that does not depend onL. Equation
~11! is valid only for large values ofL. Then, taking into
account Eq.~11!, we can evaluate the exponentz, after a
log-log plot of M (t,L) versust, for a fixed lattice sizeL,
once we know the value of ratiob/n, given in Fig. 2.

The Monte Carlo method was used again to follow the
evolution of the magnetization in time for the competing
model we are studying. First of all, we select a given value
of competition parameterp. For this value ofp we read in
Fig. 1 its respective stationary critical temperature corre-
sponding to the transition between the ferromagnetic and
paramagnetic phases. After we prepare the system to be in its
ground state, it evolves in time, measured in Monte Carlo
steps per spin, and we recorded the magnetization at each of
the ten Monte Carlo steps. The details of Monte Carlo simu-
lation were given above.

In Fig. 3 we exhibit a log-log plot ofM (t) versust for
two values of the lattice sizeL, i.e.,L5160 and 320, and for
the selected valuep50.5. We can see that the decay ofM (t)
is almost independent ofL, which allow us to use Eq.~11! to
evaluate the critical exponentz. In these calculations we
have used 100 and 50 samples for the small and large lat-
tices, respectively. We have also followed the decay of mag-
netization up to 320 Monte Carlo steps. If we discard the first
50 Monte Carlo steps, we can fit our data points to a straight
line and we obtain from its slope the valueb/nz50.065
60.001. We have discarded the initial points of simulation
because we want to put the system in its second regime,
where a power-law decay of the magnetization is expected

FIG. 3. Decay of magnetization as a function of time, for
p50.5, measured in Monte Carlo steps~MCS!. Here we used natu-
ral logarithms. Measurements were made every 10 MCS, between
10 and 320 MCS. The lattice sizes are~1603160! ~small circles!
and ~3203320! ~small triangles!.

FIG. 4. Dynamical critical exponentz as a function of 12p at
the transition point between ferromagnetic and paramagnetic
phases. The estimated values ofz fluctuate around the value 2.0.
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@24#. Taking into account the value we have obtained for
b/nz and remembering from Fig. 2 thatb/n50.1360.01 if
p50.5, we can estimate the value of the critical exponentz
as being equal to 2.060.2.

Finally, in Fig. 4 we exhibit a plot of the exponentz as a
function of 12p. For all these values ofp we have used
lattices of sizeL5320 and runs up to 320 Monte Carlo steps.
As we can see, the values of the dynamical critical exponent
fluctuate aroundz52.

This indicates that the underlying symmetries of this
model are not affected by the flux of energy. We would like
to point out that, as in our simulations the magnitude of our
estimated errors can be as large as 0.2, the above assumption
cannot be taken as a rigorous statement. But, we expect that,
for whatever value of the rate of energy pumping into the
system, the critical exponentzmust remain the same because
the intensity of the flux of energy cannot change the class of
universality of this competing model. For the special case
wherep51, that is, when the system satisfies the detailed
balance condition, we have found thatz52.060.1. This
value is in agreement with most calculations employing
Monte Carlo methods~see Ref.@4# and references therein!.

Although we do not present the detailed calculations con-
cerning the continuous transition between the paramagnetic
and antiferromagnetic phases, the critical temperature and
the dynamical critical exponent can be obtained in a similar
manner as we have done for the ferromagnetic to paramag-
netic transition. For instance, ifp50.03, we have found that
z52.060.2.

In conclusion, we have calculated the dynamical critical
exponentz for the nonequilibrium two-dimensional Ising
model. The system is in contact with a heat bath at fixed
temperature and subject to a continuous flux of energy. We
have performed Monte Carlo simulations and used finite-size
scaling relations to obtain the value ofz at the stationary
phase boundary between ordered~ferromagnetic or antiferro-
magnetic! and disordered paramagnetic phases. We have
shown that the values found forz are independent of the
magnitude of the flux of energy into the system. This type of
universal behavior ofz for the nonequilibrium Ising model is
expected for this two-state Ising model if the flux of energy
does not destroy the underlying symmetries of this system.
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